Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
NPJ Genom Med ; 9(1): 27, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582909

RESUMO

Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.

2.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352418

RESUMO

Neuronal ceroid lipofuscinosis (NCL), type 6 (CLN6) is a neurodegenerative disorder associated with progressive neurodegeneration leading to dementia, seizures, and retinopathy. CLN6 encodes a resident-ER protein involved in trafficking lysosomal proteins to the Golgi. CLN6p deficiency results in lysosomal dysfunction and deposition of storage material comprised of Nile Red + lipids/proteolipids that include subunit C of the mitochondrial ATP synthase (SUBC). White matter involvement has been recently noted in several CLN6 animal models and several CLN6 subjects had neuroimaging was consistent with leukodystrophy. CLN6 patient-derived induced pluripotent stem cells (IPSCs) were generated from several of these subjects. IPSCs were differentiated into oligodendroglia or neurons using well-established small-molecule protocols. A doxycycline-inducible transgenic system expressing neurogenin-2 (the I3N-system) was also used to generate clonal IPSC-lines (I3N-IPSCs) that could be rapidly differentiated into neurons (I3N-neurons). All CLN6 IPSC-derived neural cell lines developed significant storage material, CLN6-I3N-neuron lines revealed significant Nile Red + and SUBC + storage within three and seven days of neuronal induction, respectively. CLN6-I3N-neurons had decreased tripeptidyl peptidase-1 activity, increased Golgi area, along with increased LAMP1 + in cell bodies and neurites. SUBC + signal co-localized with LAMP1 + signal. Bulk-transcriptomic evaluation of control- and CLN6-I3N-neurons identified >1300 differentially-expressed genes (DEGs) with Gene Ontogeny (GO) Enrichment and Canonical Pathway Analyses having significant changes in lysosomal, axonal, synaptic, and neuronal-apoptotic gene pathways. These findings indicate that CLN6-IPSCs and CLN6-I3N-IPSCs are appropriate cellular models for this disorder. These I3N-neuron models may be particularly valuable for developing therapeutic interventions with high-throughput drug screening assays and/or gene therapy.

3.
Genet Med ; 26(2): 101012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924259

RESUMO

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Assuntos
Exoma , Doenças Raras , Humanos , Estudos Prospectivos , Sequenciamento do Exoma , Doenças Raras/diagnóstico , Doenças Raras/genética , Testes Genéticos/métodos , Ontário
4.
HGG Adv ; : 100236, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660254

RESUMO

Ferritin, the iron storage protein, is composed of light and heavy chain subunits, encoded by FTL and FTH1, respectively. Heterozygous variants in FTL cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in FTH1 have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with de novo heterozygous FTH1 variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense FTH1 variants were identified using whole exome sequencing, with a recurrent variant (p.Phe171*) identified in four unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant FTH1 mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminus variants in FTH1 truncate ferritin's E-helix, altering the four-fold symmetric pores of the heteropolymer and likely diminish iron-storage capacity. FTH1 pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of FTH1 cause a disorder in the spectrum of NBIA. Targeted knock-down of mutant FTH1 transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this pediatric neurodegenerative disorder.

5.
Genet Med ; 25(8): 100863, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37125634

RESUMO

PURPOSE: Bone morphogenic proteins (BMPs) regulate gene expression that is related to many critical developmental processes, including osteogenesis for which they are named. In addition, BMP2 is widely expressed in cells of mesenchymal origin, including bone, cartilage, skeletal and cardiac muscle, and adipose tissue. It also participates in neurodevelopment by inducing differentiation of neural stem cells. In humans, BMP2 variants result in a multiple congenital anomaly syndrome through a haploinsufficiency mechanism. We sought to expand the phenotypic spectrum and highlight phenotypes of patients harboring monoallelic missense variants in BMP2. METHODS: We used retrospective chart review to examine phenotypes from an international cohort of 18 individuals and compared these with published cases. Patient-derived missense variants were modeled in zebrafish to examine their effect on the ability of bmp2b to promote embryonic ventralization. RESULTS: The presented cases recapitulated existing descriptions of BMP2-related disorders, including craniofacial, cardiac, and skeletal anomalies and exhibit a wide phenotypic spectrum. We also identified patients with neural tube defects, structural brain anomalies, and endocrinopathies. Missense variants modeled in zebrafish resulted in loss of protein function. CONCLUSION: We use this expansion of reported phenotypes to suggest multidisciplinary medical monitoring and management of patients with BMP2-related skeletal dysplasia spectrum.


Assuntos
Osteocondrodisplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Estudos Retrospectivos , Diferenciação Celular , Osteogênese/genética , Proteínas Morfogenéticas Ósseas , Proteína Morfogenética Óssea 2/genética
6.
medRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778397

RESUMO

Ferritin, the iron storage protein, is composed of light and heavy chain subunits, encoded by FTL and FTH1 , respectively. Heterozygous variants in FTL cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in FTH1 have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with de novo heterozygous FTH1 variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense FTH1 variants were identified using whole exome sequencing, with a recurrent de novo variant (p.F171*) identified in three unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant FTH1 mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminus variants in FTH1 truncate ferritin's E-helix, altering the four-fold symmetric pores of the heteropolymer and likely diminish iron-storage capacity. FTH1 pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of FTH1 cause a novel disorder in the spectrum of NBIA. Targeted knock-down of mutant FTH1 transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this novel pediatric neurodegenerative disorder.

7.
Mol Psychiatry ; 28(2): 668-697, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385166

RESUMO

Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.


Assuntos
Transtornos do Neurodesenvolvimento , Masculino , Feminino , Humanos , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Genes Ligados ao Cromossomo X , Fenótipo , Canais de Cloreto/genética
8.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886988

RESUMO

Gaucher disease (GD) is caused by glucocerebrosidase deficiency leading to the accumulation of sphingolipids in macrophages named "Gaucher's Cells". These cells are characterized by deregulated expression of cell surface markers, abnormal secretion of inflammatory cytokines, and iron sequestration. These cells are known to infiltrate tissues resulting in hematological manifestations, splenomegaly, and bone diseases. We have already demonstrated that Gaucher red blood cells exhibit altered properties suggesting their key role in GD clinical manifestations. We hypothesized that Gaucher's erythrocytes could be prone to premature destruction by macrophages contributing to the formation of altered macrophages and Gaucher-like cells. We conducted in vitro experiments of erythrophagocytosis using erythrocytes from Gaucher's patients or healthy donors. Our results showed an enhanced erythrophagocytosis of Gaucher red blood cells compared to healthy red blood cells, which is related to erythrocyte sphingolipids overload and reduced deformability. Importantly, we showed elevated expression of the antigen-presenting molecules CD1d and MHC-II and of the iron-regulator hepcidin in macrophages, as well as enhanced secretion of the pro-inflammatory cytokine IL-1ß after phagocytosis of GD erythrocytes. These results strongly suggested that erythrophagocytosis in GD contribute to phenotypic modifications in macrophages. This present study shows that erythrocytes-macrophages interactions may be crucial in GD pathophysiology and pathogenesis.


Assuntos
Doença de Gaucher , Citocinas/metabolismo , Eritrócitos/metabolismo , Doença de Gaucher/patologia , Humanos , Ferro/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Esfingolipídeos/metabolismo
9.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35603789

RESUMO

The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome-like (MGS-like) phenotype associated with hypomorphic variants of GINS3, a gene not previously associated with this syndrome. We found that MGS-associated GINS3 variants affecting aspartic acid 24 (D24) compromised cell proliferation and caused accumulation of cells in S phase. These variants shortened the protein half-life, altered key protein interactions at the replisome, and negatively influenced DNA replication fork progression. Yeast expressing MGS-associated variants of PSF3 (the yeast GINS3 ortholog) also displayed impaired growth, S phase progression defects, and decreased Psf3 protein stability. We further showed that mouse embryos homozygous for a D24 variant presented intrauterine growth retardation and did not survive to birth, and that fibroblasts derived from these embryos displayed accelerated cellular senescence. Taken together, our findings implicate GINS3 in the pathogenesis of MGS and support the notion that hypomorphic variants identified in this gene impaired cell and organismal growth by compromising DNA replication.


Assuntos
Micrognatismo , Saccharomyces cerevisiae , Animais , Proteínas Cromossômicas não Histona , Microtia Congênita , Replicação do DNA/genética , Transtornos do Crescimento , Humanos , Camundongos , Micrognatismo/genética , Proteínas de Manutenção de Minicromossomo/genética , Patela/anormalidades
10.
Am J Med Genet A ; 188(5): 1376-1383, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128800

RESUMO

Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders characterized by hyperextensible skin, hypermobile joints, easy bruisability, and fragility of the connective tissues. The diagnosis is based on clinical assessment and phenotype-guided genetic testing. Most EDS subtypes can be confirmed by genetic testing except for hypermobile EDS. This study explored the utility of applying the 2017 EDS classification criteria and molecular genetic testing in establishing an EDS diagnosis in children. In this retrospective study, we reviewed 72 patients referred to a tertiary care center for evaluation of EDS who underwent one or more forms of genetic testing. Eighteen patients (18/72, 25%) met the clinical criteria for one of the EDS subtypes and of these, 15 (15/18, 83%) were confirmed molecularly. Fifty-four patients (54/72, 75%) had features that overlapped EDS and other syndromes associated with joint hypermobility but did not fully meet clinical criteria. Twelve of them (12/54, 22%) were later shown to have a positive molecular genetic diagnosis of EDS. Different molecular genetic tests were performed on the cohort of 72 patients (EDS panel, n = 44; microarray, n = 25; whole exome sequencing [WES], n = 9; single gene sequencing, n = 3; familial variant testing, n = 10; other genetic panels n = 3). EDS panel was completed in 44 patients (61%), and a molecular diagnosis was confirmed in nine of the patients who satisfied criteria for one of the EDS subtypes (9/12, 75%) and in nine of the patients who did not fully meet criteria (9/32, 28%). We observed a correlation between generalized joint hypermobility, poor healing, easy bruising, atrophic scars, skin hyperextensibility, and developmental dysplasia of the hip with a positive molecular result. This study provides guidance for the use of molecular genetic testing in combination with the 2017 clinical diagnostic criteria in children presenting with EDS characteristics.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Instabilidade Articular , Anormalidades da Pele , Doenças do Tecido Conjuntivo/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Instabilidade Articular/diagnóstico , Instabilidade Articular/genética , Biologia Molecular , Estudos Retrospectivos
11.
Genet Med ; 24(2): 430-438, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906486

RESUMO

PURPOSE: Demonstrating the clinical utility of genetic testing is fundamental to clinical adoption and reimbursement, but standardized definitions and measurement strategies for this construct do not exist. The Clinician-reported Genetic testing Utility InDEx (C-GUIDE) offers a novel measure to fill this gap. This study assessed its validity and inter-rater reliability. METHODS: Genetics professionals completed C-GUIDE after disclosure of test results to patients. Construct validity was assessed using regression analysis to measure associations between C-GUIDE and global item scores as well as potentially explanatory variables. Inter-rater reliability was assessed by administering a vignette-based survey to genetics professionals and calculating Krippendorff's α. RESULTS: On average, a 1-point increase in the global item score was associated with an increase of 3.0 in the C-GUIDE score (P < .001). Compared with diagnostic results, partially/potentially diagnostic and nondiagnostic results were associated with a reduction in C-GUIDE score of 9.5 (P < .001) and 10.2 (P < .001), respectively. Across 19 vignettes, Krippendorff's α was 0.68 (95% CI: 0.63-0.72). CONCLUSION: C-GUIDE showed acceptable validity and inter-rater reliability. Although further evaluation is required, C-GUIDE version 1.2 can be useful as a standardized approach to assess the clinical utility of genetic testing.


Assuntos
Testes Genéticos , Humanos , Reprodutibilidade dos Testes , Inquéritos e Questionários
12.
Mol Genet Genomic Med ; 9(11): e1821, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34623774

RESUMO

BACKGROUND: Unbalanced translocations between the q arm of chromosomes 5 and 13 are exceedingly rare and there is only one reported case with distal trisomy 5q/monosomy 13q. In this report, we describe a second patient with a similar rearrangement arising from a paternal balanced translocation. METHODS: Karyotype analysis was performed on the proband and their parents. Microarray was also conducted on the proband. RESULTS: Our patient was found to have global developmental delay, distinct facial features, short stature, growth hormone deficiency, delayed puberty, and brain anomalies including a small pituitary. Karyotype and microarray analysis revealed a terminal duplication of chromosome regions 5q33.3 to 5qter and a terminal deletion of chromosome regions 13q34 to 13qter that resulted from a balanced translocation in her father. The endocrine abnormalities and neuroimaging findings have not been previously described in patients with either copy number change. CONCLUSIONS: This case helps expand on the phenotype of patients with distal trisomy 5q/monosomy 13q as well as possibly providing useful information on the more common individual copy number changes.


Assuntos
Encéfalo , Transtornos Cromossômicos , Hormônio do Crescimento , Translocação Genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 5/genética , Feminino , Hormônio do Crescimento/deficiência , Humanos , Trissomia
13.
Am J Med Genet A ; 185(12): 3793-3803, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34414661

RESUMO

Osteopathia striata with cranial sclerosis (OSCS; OMIM# 300373) is a rare X-linked disorder caused by mutations of the AMER1 gene. OSCS is traditionally considered a skeletal dysplasia, characterized by cranial sclerosis and longitudinal striations in the long bone metaphyses. However, OSCS affects many body systems and varies significantly in phenotypic severity between individuals. This case series focuses on the phenotypic presentation and development of individuals with OSCS. We provide an account of 12 patients with OSCS, ranging from 5 months to 38 years of age. These patients were diagnosed with OSCS after genetic testing confirmed pathogenic mutations in AMER1. Patient consent was obtained for photos and participation. Data were collected regarding perinatal history, dysmorphic features, and review of systems. This case series documents common facial dysmorphology, as well as rare extraskeletal features of OSCS, including two patients with intestinal malrotation and two patients with pyloric stenosis. We share four apparently nonmosaic males with OSCS (one de novo and three maternal variants). We also provide a clinical update on a patient who was previously published by Chénier et al. (2012). American Journal of Medical Genetics Part A, 158, 2946-2952. More research is needed to investigate the links between genotype and phenotype and assess the long-term comorbidities and overall quality of life of individuals with OSCS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Predisposição Genética para Doença , Osteosclerose/genética , Crânio/patologia , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Canadá , Criança , Pré-Escolar , Feminino , Genes Ligados ao Cromossomo X , Humanos , Lactente , Masculino , Anormalidades Musculoesqueléticas , Mutação/genética , Osteosclerose/diagnóstico , Osteosclerose/patologia , Fenótipo , Gravidez , Qualidade de Vida , Crânio/diagnóstico por imagem , Adulto Jovem
14.
Arch Osteoporos ; 16(1): 88, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34091789

RESUMO

We assessed the diagnostic utility of genetic panel testing to detect pathogenic variants associated with osteogenesis imperfecta in children presenting with multiple fractures. Thirty-five percent of children had a pathogenic variant. A history of a femur fracture or a first fracture occurring under 2 years of age were significant clinical predictors. PURPOSE: The use of next-generation sequencing (NGS) genetic panels offers a comprehensive rapid diagnostic test to evaluate for pathogenic variants in the expanding list of genes associated with osteogenesis imperfecta (OI). We aimed to assess the diagnostic utility of this method in children with a clinically significant fracture history. METHODS: NGS panel testing was performed in 87 children presenting with multiple long bone or vertebral fractures. Subjects with a known family history of OI were excluded. Associations between genetic findings and clinical characteristics were analyzed in a retrospective observational study. RESULTS: Thirty-five percent of patients were found to have a disease-causing variant, with a higher detection rate in those patients with extra-skeletal features of OI (94 vs. 20%, p < 0.001). In subjects with extra-skeletal clinical OI features, 69% were found to have pathogenic variants in COL1A1 or COL1A2. In children without extra-skeletal features, 14 of 70 (20%) had pathogenic variants, of which 7 were variants in type 1 collagen, and the remaining 7 variants were associated with osteoblast function or signaling (PLS3, SP7, LRP5). Clinical predictors for detecting a disease-causing variant included a history of having a first fracture that occurred under 2 years of age (Odds ratio 5.5, 95%CI 1.8, 16.9) and a history of a femur fracture (Odds ratio 3.3, 95%CI 1.0, 11.1). CONCLUSION: NGS panel testing will detect causative pathogenic variants in up to a third of children with a clinically significant fracture history, particularly where there is a history of early femur fracture.


Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Osso e Ossos , Criança , Colágeno Tipo I , Humanos , Estudos Retrospectivos
15.
Hum Mutat ; 42(7): 862-876, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942433

RESUMO

Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in over 400 cellular reactions. During embryogenesis, mammals synthesize NAD de novo from dietary l -tryptophan via the kynurenine pathway. Biallelic, inactivating variants in three genes encoding enzymes of this biosynthesis pathway (KYNU, HAAO, and NADSYN1) disrupt NAD synthesis and have been identified in patients with multiple malformations of the heart, kidney, vertebrae, and limbs; these patients have Congenital NAD Deficiency Disorder HAAO and four families with biallelic variants in KYNU. These patients present similarly with multiple malformations of the heart, kidney, vertebrae, and limbs, of variable severity. We show that each variant identified in these patients results in loss-of-function, revealed by a significant reduction in NAD levels via yeast genetic complementation assays. For the first time, missense mutations are identified as a cause of malformation and shown to disrupt enzyme function. These missense and frameshift variants cause moderate to severe NAD deficiency in yeast, analogous to insufficient synthesized NAD in patients. We hereby expand the genotypic and corresponding phenotypic spectrum of Congenital NAD Deficiency Disorder.


Assuntos
NAD , Coluna Vertebral , Animais , Genótipo , Humanos , Mamíferos , Mutação de Sentido Incorreto , Coluna Vertebral/anormalidades
16.
J Cell Mol Med ; 24(17): 9726-9736, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767726

RESUMO

Gaucher disease (GD) is a genetic disease with mutations in the GBA gene that encodes glucocerebrosidase causing complications such as anaemia and bone disease. GD is characterized by accumulation of the sphingolipids (SL) glucosylceramide (GL1), glucosylsphingosine (Lyso-GL1), sphingosine (Sph) and sphingosine-1-phosphate (S1P). These SL are increased in the plasma of GD patients and the associated complications have been attributed to the accumulation of lipids in macrophages. Our recent findings indicated that red blood cells (RBCs) and erythroid progenitors may play an important role in GD pathophysiology. RBCs abnormalities and dyserythropoiesis have been observed in GD patients. Moreover, we showed higher SL levels in the plasma and in RBCs from untreated GD patients compared with controls. In this study, we quantified SL in 16 untreated GD patients and 15 patients treated with enzyme replacement therapy. Our results showed that the treatment significantly decreases SL levels in the plasma and RBCs. The increased SL content in RBCs correlates with abnormal RBC properties and with markers of disease activity. Because RBCs lack glucocerebrosidase activity, we investigated how lipid overload could occur in these cells. Our results suggested that SL overload in RBCs occurs both during erythropoiesis and during its circulation in the plasma.


Assuntos
Eritrócitos/metabolismo , Doença de Gaucher/sangue , Glucosilceramidase/genética , Esfingolipídeos/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Criança , Pré-Escolar , Eritropoese/genética , Feminino , Doença de Gaucher/genética , Doença de Gaucher/patologia , Humanos , Lisofosfolipídeos/sangue , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Psicosina/análogos & derivados , Psicosina/sangue , Esfingosina/análogos & derivados , Esfingosina/sangue , Adulto Jovem
17.
Am J Hematol ; 95(5): 483-491, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990411

RESUMO

Gaucher disease (GD) is a recessively inherited lysosomal storage disorder in which sphingolipids accumulates in the macrophages that transform into Gaucher cells. A growing body of evidence indicates that red blood cells (RBCs) represent important actors in GD pathophysiology. We previously demonstrated that altered RBC properties including increased Lyso-GL1 levels, dyserythropoiesis, and iron metabolism defect in GD patients contribute to anemia and hyperferritinemia. Since RBC defects also correlated well with markers of GD severity and were normalized under enzyme replacement therapy (ERT), the identification of molecules that are deregulated in GD RBCs represents an important issue in the search of pertinent markers of the disease. Here, we found a decreased expression of the GPI-anchored cell surface protein Semaphorin 7A (Sema7A) in RBCs from untreated GD (GD UT) patients, in parallel with increased levels of the soluble form in the plasma. Sema7A plays a role in neural guidance, atherosclerosis, and inflammatory diseases and represents a promigratory cue in physiological and pathological conditions. We showed that the decreased expression of Sema7A in RBCs correlated with their abnormal properties and with markers of GD activity. Interestingly, ERT restored the level of Sema7A to normal values both in RBCs and in plasma from GD patients. We then proposed that SemaA7A represents a simple and pertinent marker of inflammation in GD. Finally, because Sema7A is known to regulate the activity of immune cells, the increased level of soluble Sema7A in GD patients could propagate inflammation in several tissues.


Assuntos
Doença de Gaucher/tratamento farmacológico , Semaforinas/uso terapêutico , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Estudos Prospectivos , Semaforinas/farmacologia
18.
Am J Med Genet A ; 179(7): 1287-1292, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31141312

RESUMO

The widespread availability of comparative genomic hybridization (CGH) array analysis has led to the discovery of several genomic microdeletion-associated syndromes and has identified possible genetic causes for patients with previously unexplained clinical features. We report the case of four unrelated patients who share common clinical characteristics, namely failure to thrive, developmental delay, dysmorphic features, and congenital anomalies. CGH array analysis revealed that all four patients had a de novo microdeletion at 16q22.1. In this case report, we describe the clinical features of these patients and offer possible explanations for how their 16q22.1 microdeletion may account for their symptoms. We also suggest guidelines for the management of 16q22.1 microdeletion based on the phenotypes seen in our patients and the function of the genes affected by this microdeletion.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 16 , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Masculino , Fenótipo , Síndrome
19.
J Cell Biochem ; 120(10): 17180-17193, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111556

RESUMO

Autosomal recessive osteopetrosis (ARO) is a severe genetic bone disease characterized by high bone density due to mutations that affect formation or function of osteoclasts. Mutations in the a3 subunit of the vacuolar-type H+ -ATPase (encoded by T-cell immune regulator 1 [TCIRG1]) are responsible for ~50% of all ARO cases. We identified a novel TCIRG1 (c.G630A) mutation responsible for an unusually mild form of the disease. To characterize this mutation, osteoclasts were differentiated using peripheral blood monocytes from the patient (c.G630A/c.G630A), male sibling (+/+), unaffected female sibling (+/c.G630A), and unaffected parent (+/c.G630A). Osteoclast formation, bone-resorbing function, TCIRG1 protein, and mRNA expression levels were assessed. The c.G630A mutation did not affect osteoclast differentiation; however, bone-resorbing function was decreased. Both TCIRG1 protein and full-length TCIRG1 mRNA expression levels were also diminished in the affected patient's sample. The c.G630A mutation replaces the last nucleotide of exon 6 and may cause splicing defects. We analyzed the TCIRG1 splicing pattern between exons 4 to 8 and detected deletions of exons 5, 6, 7, and 5-6 (ΔE56). These deletions were only observed in c.G630A/c.G630A and +/c.G630A samples, but not in +/+ controls. Among these deletions, only ΔE56 maintained the reading frame and was predicted to generate an 85 kDa protein. Exons 5-6 encode an uncharacterized portion of the cytoplasmic N-terminal domain of a3, a domain not involved in proton translocation. To investigate the effect of ΔE56 on V-ATPase function, we transformed yeast with plasmids carrying full-length or truncated Vph1p, the yeast ortholog of a3. Both proteins were expressed; however, ΔE56-Vph1p transformed yeast failed to grow on Zn2+ -containing plates, a growth assay dependent on V-ATPase-mediated vacuolar acidification. In conclusion, our results show that the ΔE56 truncated protein is not functional, suggesting that the mild ARO phenotype observed in the patient is likely due to the residual full-length protein expression.


Assuntos
Processamento Alternativo , Osso e Ossos/metabolismo , Osteoclastos/metabolismo , Osteopetrose/genética , Mutação Puntual , Deleção de Sequência , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Criança , Transtornos Cromossômicos , Éxons , Genes Recessivos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mães , Osteoclastos/patologia , Osteopetrose/diagnóstico por imagem , Osteopetrose/metabolismo , Osteopetrose/patologia , Cultura Primária de Células , Estrutura Secundária de Proteína , Irmãos , Tomografia Computadorizada por Raios X , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/deficiência
20.
Am J Med Genet A ; 179(4): 663-667, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30803154

RESUMO

Parathyroid hormone like hormone (PTHLH) signaling is essential for the proper formation of bone and its elevation or disruption has been directly implicated in several different skeletal dysplasias. We report a patient with a 2.802 Mb deletion upstream of the PTHLH coding sequence who presents with multiple fractures, metaphyseal changes, and overall features consistent with hyperparathyroid like disease. Analysis of the deleted region revealed the loss of putative regulatory regions adjacent to PTHLH and the possible gain of a limb enhancer. Furthermore, PTHLH expression appeared to be mis-regulated in fibroblasts derived from the patient. Altogether, we find that the disruption of the regulatory landscape of PTHLH likely results in its inappropriate expression and this novel clinical presentation.


Assuntos
Hiperparatireoidismo/genética , Hiperparatireoidismo/patologia , Mutação , Proteína Relacionada ao Hormônio Paratireóideo/genética , Sequências Reguladoras de Ácido Nucleico/genética , Criança , Humanos , Masculino , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...